From Pair Bond to Partner Loss

Neuropeptides are Indispensible

Prof. Dr. Oliver Bosch The Maternal Group Dept for Behavioural and Molecular Neurobiology

Neurobiology Of Grief International Network (NOGIN) presents

AL NEUROSCIENCE OF GRIEF: 2020 VISION January 24 - 26, 2020

University of Regensburg

CR

Formation of social bonds

- First & strongest social bond in life
 - \rightarrow infant to its mother
- ***** Evolutionary origin to form adult social bonds
- Broad overlap in brain regions, pathways, neurotransmitters

CR

Animal model for social relationships

Prairie vole (Microtus ochrogaster)

- biparental species
- socially monogamous
- form enduring and selective pair bonds

e.g. Carter & Getz, 1993; Carter et al., 1995; DeVries et al., 2002; Young & Wang, 2004; Lim et al., 2004, 2007; Donaldson et al., 2010; McGraw & Young, 2010; Keebaugh et al., 2015; Johnson & Young, 2015; Walum & Young, 2018

Assessing the pair bond in the laboratory

e.g. Carter & Getz, 1993; Carter et al., 1995; DeVries et al., 2002; Young & Wang, 2004; Lim et al., 2004, 2007; Donaldson et al., 2010; McGraw & Young, 2010; Keebaugh et al., 2015; Johnson & Young, 2015; Walum & Young, 2018

Jurek & Neumann, 2018 Physiol Rev

The oxytocin system

nonapeptide

synthesized in hypothalamus

one type of GPCR \rightarrow OTR

functions

peripherally

uterus contraction milk ejection reflex

centrally

- neurotransmitter/-modulator
- \rightarrow positive emotions
- \rightarrow social behavior
- \rightarrow buffers against stressors

TMH1 TMH2 TMH3

EL 4-

TMH4 TMH5

TMH6

TMH7

CR

Oxytocin facilitates the pair bond in both sexes

- Higher OTR densities in the NAc of prairie voles than in non-monogamous vole species
- ❖ Natural genetic polymorphism in the OTR gene
 → robustly influences OTR density in the NAc
 → predicts partner preference formation
- OT signaling in the NAc required for partner preference formation
- In humans: less evidence

 <u>But</u> intranasal OT
 → men rate attractiveness of their partners higher

 \rightarrow heightened NAc activation

e.g. Liu & Wang 2003; Ross et al. 2009a,b; Keebaugh & Young 2011; Keebaugh et al., 2015; Johnson et al., 2016; King et al., 2016; Schneiderman et al., 2012; Scheele et al., 2013; Hurlemann & Scheele, 2016

Oxytocin facilitates benefits arising from positive social relationships

- Positive social relationships
 - → essential for healthy psychological development and well-being
- ***** For example:
 - decreased risk for cardiovascular disease
 - decreased risk for infectious disease
 - increased stress resilience
 - reduced likelihood to develop depression and anxiety disorders

e.g. Clayton & Darvish, 1979; House et al., 1988; Berkman, 1995; Biondi & Picardi, 1996; Uchino et al., 1996; Zisook et al., 1997; Shear & Shair, 2005; Hensley et al., 2009; Resendez & Aragona, 2013

Pre

1-2

Stress

4

Number of 30-min dialysates

3

the PVN of demonstrator

Recovery

5

I feel for you - observer shows consoling behavior

♦ Mediated via OT signaling in the anterior cingulate cortex
 → linked to empathy in humans
 Lamm et al., 2011

TR

Consequences of partner-loss

- Negative impact on physiological and mental health
- For example, with loss of spouse
 - \rightarrow the odds of physical illness can increase by 40x
 - \rightarrow mortality rates double in first year
 - → depressive symptoms develop in appr. 40% of individuals within one month

 \rightarrow Prairie vole animal model

Bosch & Young, 2018 CTBN

e.g. Clayton & Darvish, 1979; House et al., 1988; Berkman, 1995; Biondi & Picardi, 1996; Uchino et al., 1996; Zisook et al., 1997; Shear & Shair, 2005; Hensley et al., 2009; Resendez & Aragona, 2013; Sun et al., 2014; Chen et al., 1999; Thompson et al., 1984; Boyle et al., 2011; Kaprio et al., 1987; Schaefer et al., 1995

Animal model for pair bond separation

Co-housing for 5 days - with female partner **fp**

- with male partner **sp**

Consequences of separation in males

forced swim test

tail suspension test

- increased passive stress-coping in fp separated^{1,2}
- overall effect of separation on anxiety¹
- increased heart rate in fp separated²
- increased basal cort^{1,2} & adrenal weight in fp separated¹
- increased CRF mRNA in mBNST in fp¹

¹Bosch et al., 2009 NPP ²McNeal et al., 2013 Auton Neurosci

Consequences of short-term separation in lactating mothers

unaltered maternal care...

...but increased emotionality

Bosch et al., 2018 BehavBrainRes

Consequences of long-term separation

separation	2 weeks	4 weeks	short-term
passive stress-coping	not tested	①	1 1
anxiety	not tested	①	①
partner preference	yes	no	yes
aggression	not tested	Û	not tested
plasma corticosterone	Û	①	L 1

Bosch et al., 2009 NPP

Effects of chronic central CRF-R blockade

Effects of acute central CRF-R blockade on single moms

CRF-R-blockade normalizes maternal care and emotionality following separation-induced stress

What do we know about the Nacc?

CRF system in prairie voles

- CRF immunoreactive fibres and CRF receptors Lim et al., 2007
- CRF-R2 more and CRF-R1 less abundant in monogamous versus non-monogamous vole species Lim et al., 2005
- pair bond formation is facilitated by acute CRF signalling in the NAcc DeVries et al., 2002; Lim et al., 2007

...and in rats

- severe stress switches CRF actions from being appetitive to aversive
 Lemos et al., 2012
- CRF-R activation increases depressive-like behavior Chen et al., 2012

OT system

- OT mediates social buffering against stressors in female prairie voles
- In NAcc shell of rats, OT axons mainly from PVN
- In rats, >99% of OT neurons in the hypothalamus co-express CRF-R2

Dabrowska et al., 2011

Smith and Wang, 2014

Oxytocin neurons in PVN and NAcc shell

Bosch et al., 2016 PNEC

Oliver Bosch

Oxytocin neurons in PVN and NAcc shell

NAcc shell

R Separation impairs OT signalling via CRF-R2 activation in NAcc

Bosch et al., 2016 PNEC

R Ephys evidence for CRF-R2 – OT neuron interaction in PVN

recordings from OT axons in the NAcc not feasible \rightarrow record from PVN neurons

Identification via double-labelling OT-Venus

Activation of CRF-R2 by stresscopin

- \rightarrow acts primarily at pre-synaptic locus to regulate excitatory drive onto OT neurons
- → CRF-R2 activation decreases glutamate drive and excitability of OT neurons

